SCANTOMARK

Canvas API
User Guide

ii

Disclaimer This user guide is provided on an “as is” basis for information only. This user
guide and its associated website (scantomark.com) carry absolutely NO WARRANTIES of
any kind, either express or implied.

SCANTOMARK.COM

E-mail: techsupport@scantomark.com

mailto:techsupport@scantomark.com

Contents

1 Canvas Basics for Instructors

1.1 General System Structure oL
1.2 Authentication
1.3 Student ID Numbers
2 Send Custom Documents to Individual Students
2.1 Required Modules
2.2 Initial Configuration
2.3 Matching SIS IDs with Canvas User IDs
2.4 Search for Student PDF Files
2.5 Upload File
2.6 Attach File to Comment
2.7 Settings for Actual Exams oL

iii

W N NN

O 00 ~J O O U U i

CONTENTS

v

Overview

This guide provides an example of how to upload exam scores and send forms back to
individual students on Canvas, a learning management system (LMS).! Here we use the
cloud version hosted by Instructure as a running example.?

Note that this guide is not meant to be a comprehensive guide for using Canvas; instead,
it provide “just enough” information for interested faculty to handle data and documents
more efficiently on the platform.

Prerequisites
Some familiarity with the following topics will be helpful for using this guide:
e Python programming language, and

o RESTful framework for handing web requests and responses.

thttps://github.com/instructure/canvas-lms/wiki
Zhttps://www.instructure.com/canvas/login

https://github.com/instructure/canvas-lms/wiki
https://www.instructure.com/canvas/login

Chapter 1

Canvas Basics for Instructors

1.1 General System Structure

When logging onto the Canvas system, instructors usually see a list of courses. From there
they can navigate into a course and manage its content. All contents, such as courses,
assignments, and submissions, are organized in a directory tree of many levels. An example
is shown below.

https://yourschool.instructure.com/courses/98765/assignments/12345

The above example is an “assignment URL”, in which 98765 is the course ID number
and 12345 is the assignment ID number. Accordingly, the course URL is:

https://yourschool.instructure.com/courses/98765

ID numbers are always required whenever you try to access course content by using
Canvas REST API, which has two more levels in the directory tree:

https://yourschool.instructure.com/api/vl/courses/98765

1.2 Authentication

Canvas REST API is controlled by token authentication rather than the typical security
mechanism using user ID and password. So the first step is to generate an API key or access
token (which is basically a long string of random characters).

Once you log onto the Canvas system, go to:

CHAPTER 1. CANVAS BASICS FOR INSTRUCTORS 3

Account
Settings
Approved Integration
+ New Access Token

Leave the expiration fields blank for no expiration is you expect to use the token very
often. Click on Generate Token and a long string will be created for you. You will need
this token to access course content by using API.

Note that the token is on the per-user basis, i.e., you will use the same token for all of
your courses.

1.3 Student ID Numbers

Similar to all course content, students has unique ID numbers on Canvas, but the numbers
may not be the same as whatever numbers used by schools in what is called “SIS” (student
information system).

The best way to get student ID numbers on Canvas is to export grades into CSV. Below
is an example.

Student 1D SIS User ID SIS Login ID Section Exam (123456789)
Points Possible 300
Last Name, First Name 123456 987654321 987654321 Spring 2025 270

In the above example, it is the ID field (123456) that is used for identifying students. The
other two fields SIS User ID and SIS Login ID are generally useless for Canvas REST

API. In the heading of the field Exam (123456789) 123456789 is the ID number of the
“assignment” called “Exam”.

It is, however, more convenient for students to use their SIS IDs (sometimes called campus-
wide IDs) rather than Canvas IDs on their exam forms. One particular reason is that Canvas

IDs are not used by students or instructors for login purposes and as such are not easy to
find.

Chapter 2

Send Custom Documents to
Individual Students

In this user guide we focus on only one method of sending custom documents to individual
students: sending the document as an attachment to a comment an instructor makes on a
student’s submission for an assignment. There are a few assumptions:

1. Campus-wide SIS IDs (rather than Canvas user IDs) used on exam forms.
2. An assignment (exam) has been created on Canvas.

3. All exam files (all PDFs, exam scores, and Python code) are within the same folder
(see below for an example, which is basically the content of the zip file you would get
if the grading is successfully completed plus the Python code file).

ExamFolder
987654321-A-10-95-some-random-test.pdf #individual student form

scores.csv #all scores
exam-all-forms-graded.pdf #all graded forms in one file

answer-key.csv #original answer keys you uploaded
exam-all-forms-original.pdf #the original forms you uploaded

attach_file_to_assignment_comments.py #the Python code

In this example, you would navigate to the directory ExamFolder in a terminal and then
run

python3 attach_file_to_assignment_comments.py

CHAPTER 2. SEND CUSTOM DOCUMENTS TO INDIVIDUAL STUDENTS >

The Python file (module) is not meant to be “installed”; rather, it is supposed to be
“created” or “copied” for each exam. It is designed to do a single task and as such it is
far from a complete package. The content of the Python file is explained below section by
section but everything should be in the same file.

2.1 Required Modules

The following modules are standard ones and should be available with default installation.

import requests
import json
import os
import re
import csv

U i W N =

2.2 Initial Configuration

Two pieces of information are required for initial configuration:

1. Your access token. Generate one on Canvas and copy/paste to access_token.

2. The subdomain name of your school, which is supposed to replace yourschool but
keep everything else.

I 1 # Configuration

2 | access_token = 'generate token on canvas and copy here'
3| base_url = 'https://yourschool.instructure.com/api/vl'
1
5

Headers for authentication
6 headers = {
7 "Authorization': f'Bearer {access_token}',
8 'Content-Type': 'application/json'

91 }

CHAPTER 2. SEND CUSTOM DOCUMENTS TO INDIVIDUAL STUDENTS 6

2.3 Matching SIS IDs with Canvas User 1Ds

Assuming you use campus-wide or SIS IDs (called “CWID” throughout this guide) on the
exam form, it is necessary to match them with Canvas user IDs. The following function
returns a dictionary {cwid: user_id}. The three inputs are:

1. csvfile: the name of the CSV file that hold the matching of CWID and Canvas user
ID.

2. cwid_col: the heading of the CWID column in the CSV file.

3. user_id_col: the heading of the Canvas user ID column in the CSV file.

1 def get_user_ids(csvfile, cwid_col, user_id_col):

2 stu_dict = {}

3 with open(csvfile, mode='r') as file:

4 csv_reader = csv.DictReader(file)

5 stu_dict = {row.get(cwid_col): row.get(user_id_col) for
row in csv_reader}

6 # cwid: user_id

[return stu_dict

2.4 Search for Student PDF Files

The following function is used to search a directory for student exam forms based on their
IDs marked on CWIDs. Marked student forms are named with IDs, exam version, scores,
and some random text.

1 def find_files(directory, regex_pattern):
2 matching_files = []
3 regex = re.compile(regex_pattern)
for root, dirs, files in os.walk(directory):

2 QAN

for file in files:

6 if regex.search(file):
matching_files.append(os.path.join(root, file))
8 return matching_files

CHAPTER 2. SEND CUSTOM DOCUMENTS TO INDIVIDUAL STUDENTS 7

2.5 Upload File

Before you can “send” a file to any student, you must upload the file to Canvas first and
obtain a file ID number. Then you add a comment and use that file as attachment. The
following function does the first step—upload a file to a student’s submission and get an 1D
number. Notice the long URL. There is a “folder” of submissions although a typical exam
students do not submit anything on Canvas.

1 def upload_file(course_id, assignment_id, user_id, file_path):

2 # Step 1: Start the file upload process

3 url = f"{base_url}/courses/{course_id}/assignments/{
assignment_id}/submissions/{user_id}/comments/files"

4 # Initiate file upload

5 params = {

6 'name': file_path.split('/')[-1],

7 'size': str(os.path.getsize(file_path)),

8 'content_type': 'application/octet-stream',

9 'parent_folder_path': '/'

10 }
response = requests.post(url, headers=headers, params=params)

12 if response.status_code != 200:

: print (f"Failed to initiate file upload: {response.
status_codel}")

14 print (response. json())

15 return None

16 # Step 2: Upload the file

17 upload_url = response.json() ['upload_url']

18 upload_params = response.json() ['upload_params']

19 with open(file_path, 'rb') as f:

20 files = {'file': £}

21 upload_response = requests.post(upload_url, data=
upload_params, files=files)

22 if upload_response.status_code not in [200, 201]:

23 print (f"Failed to upload file: {upload_response.
status_codel}")

24 print (upload_response. json())

25 return None

26 # Step 3: Confirm the upload and get the file ID

27 file_info = upload_response.json()

28 file_id = file_info['id']

29 return file_id

CHAPTER 2. SEND CUSTOM DOCUMENTS TO INDIVIDUAL STUDENTS 8

2.6

Attach File to Comment

The following function is to attach a file (using the filed ID from the previous function) to a
comment.

1 def attach_file_to_comment (course_id, assignment_id, user_id,

2.7

file id, comment_ text):
Add the file to the assignment comment
url = f"{base_url}/courses/{course_id}/assignments/{
assignment_id}/submissions/{user_id}"
payload = {
"comment": {
"text_comment": comment_text,
"file ids": [file_ id]

}
response = requests.put(url, headers=headers, data=json.dumps(
payload))
if response.status_code in [200, 201]:
print ("File attached to comment successfully!")
#print (response. json())
else:
print (f"Failed to attach file to comment: {response.
status_codel}")
print (response. json())

Settings for Actual Exams

Once you finish the grading and collect required files and ID numbers, you can now run the
code to send graded exam forms to students individually.

CHAPTER 2. SEND CUSTOM DOCUMENTS TO INDIVIDUAL STUDENTS 9

#####Change accordingly

1

2| csvfile = 'students.csv'

3 cwid_col = 'CWID'

| user_id_col = 'ID'

5 course_id = '987654"'

6 assignment_id = '123456'

7| comment_text = 'Your exam xyz Scantron form attached.'

8 HH##H##

9 stu_dict = get_user_ids(csvfile, cwid_col, user_id_col)
10 = for cwid, user_id in stu_dict.items():

11 pattern = f'{cwid}.+pdf'

12 student_files = find_files('./', pattern)

13 print (cwid, user_id, student_files)

14 if student_files:

15 for stu_f in student_files:

16 file_id = upload_file(course_id, assignment_id,

user_id, stu_f)
17 if file_id:
18 attach_file_to_comment (course_id, assignment_id,

user_id, file id, comment_text)

Make sure to change the settings based on your own exam.
To summarize, if you copy/paste the code shown in this guide, you only need to change
the following variables:

e access_token which you can generate and get from your Canvas account.

e base_url make sure to use your school’s subdomain on instructure.com.

« csvfile this is the CSV file that matches CWID (or SIS ID) with Canvas user ID.

e cwid_col the heading of the CWID column in the CSV file.
o user_id_col the heading of the Canvas user ID column in the CSV file.
e course_id this is the ID number of your course on Canvas.

o assignment_id this is the ID number of the exam (which is an assignment) on Canvas.

CHAPTER 2. SEND CUSTOM DOCUMENTS TO INDIVIDUAL STUDENTS 10

|0’0|
SCANTOMARK

	Canvas Basics for Instructors
	General System Structure
	Authentication
	Student ID Numbers

	Send Custom Documents to Individual Students
	Required Modules
	Initial Configuration
	Matching SIS IDs with Canvas User IDs
	Search for Student PDF Files
	Upload File
	Attach File to Comment
	Settings for Actual Exams

